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Measurable Sets

The length of an interval 7, written /), is defined to be the difference
of the endpoints of the interval [, Thus, irrespective of whether an
interval [ with a and b as its endpoints is closed, open, open-closed
or closed-open, the length II) is b—a, where g < 5. In case a=5,
the interval [a, b] degenerates to a point and has length zéero while an
infinite interval has length infinity. Thus, length is an example of a set
function, i.e., a function which associates an extended real number to
each set in some collection of sets. In the case of length, the domain
is the collection of all intervals. The set function [ clearly satisfies the
following:

1. I = 0, for all intervals I,

2. If {f;} is a countable collection of mutually disjoint intervals,
then

=1
3. If x is any fixed real number, then
D)= +3).
In the above, we have said that in the case of length, the domain

is the collection of all intervals, We would now like to extend the
notion of length to more complicated and arbitrary sets than intervals.

(-0 rf}- ¥, i),

1 LENGTH OF SETS

Let & be an open set in K. Then O can be written as a countable
union of mutually disjoint open intervals {fi}, umque except so far as
order is concerned; i.e.,

ﬂ- U I;.

fam]
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The length of the open set O is defined by

10)= ¥ iT).

The length /{O) is well defined since the sum on the right does not
depend on the order of the terms used in the summing process. Thus,
the length of an open set is the sum of the lengths of the intervals (of
course open and mutually disjoint) comprising O.

It is easy to verify that if O) and O are two open sets in R such
that Oy C O, then

KOy < NO).
Hence, for any open set O contained in [a, 5], we have
0= HO)=b—a.

Further, let F be a closed set contained in some interval [a, 5]. Then
the length of the closed set F is defined by

F) = b— a— I(F),

where Fe=[a, b]— F. It can easily be seen that NF) == 0.

So far, we have extended the concept of length to open and closed
sets. And since the classes of these sets are too restricted, we would
like to extend the concept of length to a wider class of sets in B, if
possible, to the class of all sets in R. In this regard, we imagine a
function m which assigns to each set E in R, a nonnegative extended
real number, written mi( E), called the measure of E(an extension of the
notion of length function), satisfying the following properties:

1. m(E) is defined for all sets E= P(R).

2. me([)=[TI), for an interval I.

3. If {E} is a sequence of disjoint sets, then

" :I'_'ll By ):- Jg m(E)-

(This property is known as countable additivity.)

4. m(E+ ¥)=m(E), where y is any fixed number. (This property is

known as translation invariance.)

Unfortanately, it is impossible to comstruct a set function which
satisfies all the above four properties (1) to (4). In fact, if the conti-
nuum hypothesis ““any uncountable set of all real numbers is equivalent
to the set of all real numbers™ is assumed, one cannot construct such
4 measure satisfyving the properties (1) to (4). As a result one of these
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four properties must be sacrificed or weakened at least. Following
Henri Lebesgue (1875-1941), who made many contributions to measure
theory and integration, it is most useful to retain the last three proper-
ties, ie., (2) to (4), and to weaken the condition given in (1) so that
m(E) need not be defined for all sets E im R. Still, of course, we shall
be interested in defining m(E) for as many sets as possible.

Weakening property (1) is not the only approach; it is also possible
to replace property (3) of countable additivity by the weaker property
of finite additivity: for each finite sequence {E} of disjoint sets, we
have m() E)="Y_m{E). Another possible alternative to property (3)
is countable subadditivity which is satisfied by the ooter measure, Thus
it i3 convenient to introdoce first a set function, the ooter measure,
defined for all sets in R and is related to the measure of the set (when

it exists).

2 OUTER MEASURE
All the sets considered in this chapter are contained nm R, unless

stated otherwise. We shall be concerned particularly with intervals

of the form Ja, 5[ unless otherwise specified.
Let us consider the family oF of all countable collections of open

intervals. For any arbitrary .=, the sum % /JI) is a non-negative

=

extended real nomber. Farther, this sum depends only on & and not

on the order used in the summing process.
Mow, let E be an arbitrary set. Consider the subfamily & of oF

consisting of countable collections .7 of open intervals {f;} such that
ECUL; e,
i

C={9: 9=5F and .J covers E}.

The subfamily £ is obviously nonempty. Thus we obtain a well defin-
ed number m"(E) in the set of all nonnegative extended real numbers
given by

m"(E)=inf { I‘% rn: =0,

2.1 Definition. The Lebesgne onter measare or briefy the onter
measure m*(E) of an arbitrary set E iz given by

m*(E)=inf ¥, i1,
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where the infimum is taken over all countable collections {f;} of open
intervals such that Ec ) f,.
i

Remark. The outer measure m* is a set function _whi-l:.h i5 defined
from the power set 2P(R) into the set of all non-negative extended real
num bers.

2.2 Theorem

(a) m*(4) = O, for all zets A.

(b) m"($) = 0.

(c) If 4 and B are two sets with AC B, then m*(A4) = m"(8).
(This property is known as monotonicity.)

(d) m*(A) =0, for every singleton ser A.

(e) The functionm® is translation invariant, i.e., m"(A +x)=m"(A),
Jor every set A and for every x=ER.

Frogf. The proofs of (a) and (b) arc obvious.
{c) Let {I;} be a countable collection of disjoint open intervals such
that 8 U f,. Then A | f, and therefore

m*(A) =s:..§ KT,

This imequality is true for any coverings {I,} of B. Hence the result
follows.
(d) Let A ={x} be an arbitrary singleton set. Since

1 I
o |

is an cpen covering of 4 for cach n=N, and NI,)=

follows. in view of (a).
(e) Given any interval J with end points & and 5, the set f4x
defined by

2

—
n

., the result

F+z={y+x:p=I}
is clearly an interval with endpoints a4+ x and »+ x. Moreover,
I+ x) = KT).

MNow, !nt « = 0 be given. Then there is a countable collection {I.}
of open intervals such that 4C (L) and satisfies
. 8

_‘5'1 KL) < ni"(A) +e.
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Clearly A+ xC U(fa+ x). Therefore
A+ x) = EI:[:..-H:}- _-E_EII:L.} < m*(d)+ «.
Since « = 0 iz arbitrary, we have m*(4d+x) = m"(4). The reverse
inequality follows by considering 4 = (4 + x) — x and using the above.
To answer affirmatively the question whether m*® is a gencralization

of the length function defined for the intervals, we prove the following
theorem.

2.3 Theorem. The ourer measure of an interval is itz lengeh.

Froaf. Case I: Suppose [ is a closed finite interval, (say) [a, 5]. Since,
for each « > 0, the open interval ]::— %., b+—;-[n:nntaiua [a, &), we
have

ma = I |la— -Eﬂ .E|-|-=—E-{]—b-—a+r.

This being true for each « > 0, we must have
- m*(I) = b—a=KI).
To complete the proof of the resalt, we need to show that
mI) > b—a. (1)

Let « = 0 be given. Then there exists a countable collection {f,} of
open intervals covering [a, &] such that

m*(I) > X Hia)— . @)

By the Heine-Borel Theorem (cf. I-1.1), any collection of open inter-
wals covering [a, #] contains a finite subcollection which also covers
[z, &), and since the sum of the lengths of the finite subcollection is
not greater than the sum of the lengths of the original collection, it
suffices to establish the inequality (2) for finite collections {I,} which
cover [a, &]. )

Since a=[a, b] implies that ac= h.;.lf.. there must be one of the inter-
vals [, which contains @. Let it be Jay, . Then ay =< a << by If &y = b,
then & =[a, &), and since &; & Ja;, &, there must be an interval Jas, &
in the finite collection {I,} such that by=]as, bl; that is ay < by <= ba.
Continuing in this manner, we get intervals Jay, &, Jaz, &af. . . . from
the collection {[,} such that

ay == By_y = by, i=1,2,...
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where by =a. Since {I;} is a finite collection, this process must termi-
nate with some interval Jax, & in the collection which is possible only
when b=]ay, bf. Thus

¥ i) > 3 a5

(b= ap) +(bey = @)+ . . .+(By=a)
= by = {a@e—=bg—) = .. . = (@2 =) —ay
".-'r"‘-f"*:‘ﬂ|
= b—a,
since a;— by < 0, by > b and a, < a. This, in view of (2), verifies that

m(f) > b=—ag=—«

Hence m*([) = b—a.
Care 2: Suppose I is any finite interval. Then given an « > 0, there

exists a closed finite interval J—F such that

Ny = K —e.
Therefore,
=« < {J)y=m"(J) < m"(I) = m"([)=NI)=IT)
= NI)=e < m*(I) =< KI).

This is true for each « > 0. Hence m*(I)=I(I).

Case 3: Suppose [ 15 an infinite interval. Then given any real
number K = 0, there exists a closed finite interval J I such that
)= K. Thus m"(I) = m"(J)= {J)= K, that is m"(I) = K for any arbit-
rary real number K = 0. Hence m"(I)= oo = I

3 LEBESGUE MEASURE

The outer measure, although defined for all sets in R, does not
satisfy, in general, the countable additivity | In order to
the domain of definition for the function m* to some suitable subset,

M, of the power set SP{R). The members of H are called measura-
ble sets which are defined as follows.
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3.1 Definition.” A set E is saidto be Lebesgune measurable or briefly
measarable if for each set A, we have

" (A) = m"(A 1 E) + m"(A ) E¥). (3)

Remark. The definition of measurability says that the measurable
sets are those (bounded or unbounded) which split every set (measor-
able or not) into two pieces that are additive with respect to the outer
IEASTre,

Since A=A E)L{4 N E) and m*® is subadditive, we always have
mi (A = m (AN E)+m*(ANEx).

Thus, in order to establish that E is measurable, we need only to
show, for any set A, that :

m"(A) = m"(d4 [ E)+m"(A N EF). (4)

Note. The ineguality (4) is often used in practice to show that a
given set E is measurable and the set 4 in reference is called test set
since it is used to test the measurability.

Remark. H. Lebesgue, in his investigation, did not actually use the
definition given above to define measurable sets. Instead, he conside-
red set E in the bounded interval [a, §] and first defined the inferior
(or inmer) measore of the set Eas

mi [ E)=b— a— m"(E*).
He, then, called the set £ to be measurable of

mi (E)= m"(E).

In other words, E is measurable if

i (E) = b —a — m"(E¥). (3)
If we let A =[a, b], the eguality (5) becomes

m*(A) = m"(A ) E)+ m" (A E2),

which is the same as (3). Thus the actual definition which Lebesgue
used is a special case of (3). Since Lebesgue started with sets contain-
ed in [a, b], i.e. bounded sets, appropriate modifications had to be

made for unbounded sets. Such modifications, however, are not
needed if Definition 3.1 is used.
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3.2 Delinition. The set function m : . — R*, obtained by restrict-
ing the set functions m* to the subset 5 of the domain of definition
F(R) of m*; that is, m=m" g, is called Lebesgue measure function
for the sets in K.

For each E=. 5, m{E)=m"(E). The extended real number m{E) is
called the Lebesgoe measare or simply measure of the set E.

4 PROPERTIES OF MEASURABLE SETS

4.1 Theorem

(a) If E Ir a measurable set, then 50 iz E=.
(b) The sets ¢ and B are measurable sets.

Proof. The proof is evident from Definition 3.1.J]

4.2 Theorem [f E har the outer measure rero, then E iz a measurable
sef. Furthermore, every subset of E is measurable.

Proaf. Let A be any set. Then
m(A) 2 m* (AN E)+m"{4NEF),
since
ANECE = mANE) = m*(E)=10
and ANECA = m(ANE) < m"(4).
Hence E is rn:.uurl.hI:.Th:nt'h:rpmtfhlluwul from Problem 1.J}
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5 BOREL SETS AND THEIR MEASURABILITY

Given any collection ¢ of subsets of 'a set S, consider the family o
of all e-algebras each of which contains ', and let

A= N{EE=eF).

Then one can verify that _ 4§ is the smallest o-algebra (unigue) that
containg (7, in the sense that _{ is a s-algebra containing © and if £
15 any other e-alpebra containing [, then A CZE. Such a collection 4§
is called the e-algebra generated by (.

Bince the intersection of a countable collection of open sets in R
need not be open, the collection of all.open sets in R is not a o-algebra.
This motivates us to introduce the following notion.

5.1 Definition. The c-algebra generated by the family of all open
sets in R, denoted by 0, is called the class of Borel sets in B. The
sets in & are called Borel sets in R.

5.2 Examples. Each of the open sets, closed sets, §rsets, oF.-sets,
O as~s0ls, SF g-sets, .. . 15 4 simple type of Borel zet,

The class of Borel sets plays an important role in analysis in general,
and in measure theory in particular, We now prove that the Borel sets
are measurahble (in sense of Lebesgue).

%£.3 Theorem. Every Borel set in B is measurable; that is, §C H.

Proof. We prove the theorem in several steps by using the fact that
M is a o-algebra.
Step 1:  The interval Ja, cof ir measurable.
It is enough to show, for any set .f, that
m(Ad) = m(Ay)+m"(Az),
where Ay =4 a, o] and d2=A[1]- o, .
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If m"(A)= oo, our assertion is trivially true. Let m"(4) < oo. Then,
for each « = 0, 3 a countable collection {I.} of open intervals that
covers A4 and satisfies

ﬁ: ) = m*(A)+e
Write In=rI.MN}a, = and If=TI]— =, a]. Then,
I:UH“{I.“]'E- {:C'I]'U{In-n]_ = & ﬂ]}

= fu(] = =0, so] -
-f-}
and I[N fz=¢. Therefore,
Hi)=KR)+KL)
w= L)+ ().
But

AiC[UlNla, col= UlfaNla, col)= Ul

g0 that m*(d;) = m"(U ) =< Cm*(F). Similady A;CUfT and so
m*(Az) = 3} m*([3). Hence,

m* (A +m*(Az) = {m(R)+m (I5)}

= THL) < m(4)+e.
Since € > 0 is arbitrary, this verifies the result.
Step 2: The inferval |— o, a] is measurable since

1- 90, a]=]a, =l

Step 3: Theinterval | — co, B] is measurable since it can be expres-
scd as a countable union of the intervals of the form as in Step 2;

that is,
- 1
]um,H-EI]-m,b-—?l_
Step 4  Since any open interval }a, 5] can be expressed as
. la, B[ =]= oo, B[N]a, [,
it is measurable,
Step 5: Every open set is measurable. It is so becanse it can be ex-
pressed as a countable union of open intervals (disjoint).
Hence, in view of Step 3, the o-algebra S contains all the open
sets in R. Since djis the smallest o-algebra containing all the open sets,
we conclude that & 4. This completes the proof of the theorem. ]}
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NONMEASURABLE SETS

We now turn to the question whether or not there exist sets which
are nonmeasurable in the sense of Lebesguoe,

Most of the sets we usually come across in analysis are measurable,
However, there are several examples of nonmeasurable sets given by
G. Vitali (1905), Van Vieck (1905), F. Bernstein (1908) and others.
However, all these examples have been constructed on the assumption
that the axiom of choice of set theory is valid, and it was not clear
until recently whether a nonmeasurable set could be constructed with-
out assuming the validity of the axiom of choice. Recently, Robert
Solovay (1970) has solved this problem by proving that the existence
of nonmeasurable sets cannot be established iff the axiom of choice is
disallowed.

In this section, we discuss an example of a nonmeasurable set which
is & slight modification of the one given by Vitali. Before we do s0 we
need certain preliminaries.

Defipition. If x and yp are real numbers in [0, 1], then the sam
moduls 1, +, of x and y is defined by

) x4y, x4y <1
X4 y=
x+y=1, x4y = 1.

Definition. If Eis a subset of [0, 1[, then the translate medulo 1
of .E by y is defined to be the set given by
E-T-}'-{:::-:-T-]-', x=E}.
Iti::uytavuﬂffthlta
(i) = ye[0, I[ = x4+ [0, 1.

(if) The operation + is commutative and associative,

(iii) If we assign to each x&[0, 1[, the angle 2»=x, then the sum
modulo 1 corresponds to the addition of angles, and translate
modulo 1 by ¥ corresponds to rotation through an angle of 2=y.
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Theorem. Lot EC[0,I] be a measurable sed and y= [0, [ be given.
Then the set E 4y is measurable and m(E + ¥) = m{ E).

Proof., Define

Ey=ENI0, 1—¥
= EN[ =y I

Clearly E; and E; are two disjoint measurable sets such that
Ey ) Ey= E. Therefore

mi E) = mi E; )+ m{Ez).

Mow, Ei+y=E;+yand Ex+y=F:+y—1and so Ej+y and Exiy
both are measurable sets with

{ﬂ'ﬂlﬁ'i + ¥) = m{ Ey + ¥) = m(E)

el + ¥) = e Bz + 3 — 1) = me( Ez),

gimce 1 is translation invariant n
Ef y=(E L E)+¥

= {Ey +»)U (Ez+ )
Hence E -y is a measurahle set with

mi{ E+ 3) = mi Ey + ¥) + ri{ Ea + )
= il Ey ) 4 Ea)
-m(E) ]

Measurable Functions

DEFINITION
In what follows, we shall make use of the following notations:

Efz a)={xc=E: fix) = a}
B f=a)={x=E: flx)=u}
Ef = a)={x=E : f(x) = a}
E(f > a)={x=EF: f(x) > a}
E(f < a)={x=E : f(x) < a}.
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Definition. An extended real-valued function® f defined on a
measurable set E is said to be Lebesgne-measurable or, more briefly,
measurable on E, if the set B/ > «) is measurable for all real
numbers «.

Note. The measure of the set E(J > «) may be finite or infinite,

Justification of Definition I.1. As = varies, the behaviour of the set
E f > «) describes how the values of the function f are distributed.
Intitutively, it is obwious that the smoother the function f is, the
smaller the variety of the sets will be. For instance, if E=R and [ is
continuous on R, the set E{ = «) is always open.

Problem Show that a constant function with a measurable domain
13 measurable.,

Solurion. Let S : E (measurable) - R* be a constant function defined
by fx)= K, where X is a constant. We clearly note, for any real num-
ber o, that

E if 2 = K

EU"}-!}-{I# if = = K,

This implies that E[f = «) s 2 measurable set since both the ss=ts E
and ¢ are measurable.



